CONFORMAL GEOMETRY OF GENERALIZED METRIC SPACES
نویسندگان
چکیده
منابع مشابه
Complete Generalized Metric Spaces
The well-known Banach’s fixed point theorem asserts that ifD X, f is contractive and X, d is complete, then f has a unique fixed point inX. It is well known that the Banach contraction principle 1 is a very useful and classical tool in nonlinear analysis. In 1969, Boyd and Wong 2 introduced the notion ofΦ-contraction. A mapping f : X → X on a metric space is called Φ-contraction if there exists...
متن کاملOn the topological equivalence of some generalized metric spaces
The aim of this paper is to establish the equivalence between the concepts of an $S$-metric space and a cone $S$-metric space using some topological approaches. We introduce a new notion of a $TVS$-cone $S$-metric space using some facts about topological vector spaces. We see that the known results on cone $S$-metric spaces (or $N$-cone metric spaces) can be directly obtained from...
متن کاملOn Generalized Probabilistic Metric Spaces
In the present paper we study some generalized probabilistic metric spaces. Relationships with another deterministic and probabilistic metric structures are analyzed. A contraction condition for mappings with values into such a generalized probabilistic metric space is given. Fixed point results are proved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1929
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.15.4.376